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| Asymmetric light diffraction by pulsed ultrasonic waves

Thomas H. Neighbors, Hl
The BDM Corporation, 7915 Jones Branch Drive, McLean, Virginia 22102

Walter G. Mayer
Physics Department, Georgetown University, Washington, DC 20057

(Received 29 October 1982; accepted for publication 17 March 1983)

Low-MHz, continuous ultrasonic waves traveling in a transparent medium cause light to be
diffracted into discrete diffraction orders when light and sound propagation directions are normal
to each other. When pulsed ultrasonic waves are used the diffraction orders split into secondary
' orders which are asymmetric with respect to the central diffraction order. This splitting is derived
and a general expression provided for the intensity as a function of the ultrasonic pulse Fourier
spectra. Examples are provided which demonstrate the degree of asymmetry for an exponential
driving pulse and the convergence to the classic Raman-Nath results when the pulse approaches a

e

continuous wave.
PACS numbers: 43.35.Sx, 43.20.Bi

INTRODUCTION

Optical probing of ultrasonic waves had its origins in
1932 through the independent observations by Debye and
Sears' in Washington and Lucas and Biquard? in Paris that
an ultrasonic beam in a liquid acts like a diffraction grating
when illuminated by normally incident light. In 1935 Ra-
man and Nath®>- explained these observations by treating
the ultrasonic beam as a moving phase grating. Their theory
successfully predicted the diffracted light angular distribu-
tion and the relative intensities in the diffraction orders as a
function of sound intensity, optical and ultrasonic wave-
lengths, and ultrasonic beam thickness.

Refinements of the Raman-Nath theory have been
used to investigate a broad spectrum of theoretical and ex-
perimental conditions related to light diffraction by ultra-
sound. This has ranged from the theoretical investigation of
light diffraction by superposed ultrasound by Murty® to the
use of optical probing for the investigation of the growth of
higher harmonics in finite amplitude progressive waves by
Zankel and Hiedemann’ and Breazeale and Hiedemann.®
Hargrove® extended the Raman-Nath theory to include the
prediction of the diffraction pattern for arbitrary ultrasonic
waves as illuminated by Gaussian light beams. Zitter'® in
turn applied this extended theory to light diffraction by sym-
metric short ultrasonic pulses. Other extensions have includ-
ed the examination of light modulation by ultrasonic waves
inthe'yrmofmpﬁtudeopﬁedmﬁnpbymﬁpﬁﬂ
al'-

Our current interest is prompted by the recent experi-
mental work of Hiusler er al.,'* which demonstrated the
production of structured diffraction patterns by pulsed ul-
trasonic waves and provided qualitative verification of the
pulsed diffraction theory presented by Zitter.'® This paper
expands the examination of Raman-Nath diffraction by
pulsed ultrasonic waves to include nonsymmetric pulses
which are composed of modulated sinusoidal waves of wave-
length A, with a pulse repetition intesval 4,.

There are three primary results. Firat, for small values
of the pulse Raman-Nath parameter, optical probing pro-

148 J. Acoust. Soc. Am. 74 (1), July 1983

0001-49008/83/070148-07900.00

vides a direct technique for the relative measurement of the
ultrasonic pulse amplitude spectra. Second, the splitting of
the intensities in the first Raman—Nath diffraction order into
satellite orders as discussed by Zitter'® also occurs for the
central, second, third, etc., diffraction orders. A general
expression is provided for the calculation of these intensities.
Third, the intensity distribution within the diffraction orders
is asymmetric, i.e., the intensity in the positive mth diffrac-
tion is not equal to the intensity in the negative mth order.

i. GENERAL THEORY

Whern a monochromatic light beam of frequency f,
wavelength A, and width 2/, is normally incident on an ultra-
sonic beam of diameter D, frequency f,, and wavelength 4,
the amplitude distribution of the light in the farfield is given
by the diffraction integral as

A(O.t)-—-Ce“"f eflxsin Sgivtaigly )
-1

where
C = the normalization constant
o=2rf
k=2m/A
6 = the farfield angle
t = time
a, =27 f,
ko =2w/A,
a = oot — kox,

with via) representing the phase change in the light wave
front due to the ultrasonic wave. For & continuous wave exci-
tation

via) = v sinja) , @
with

v=2muD /A 3)
defined ss the Raman-Nath parameter where  is the maxi-
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mum variation of the media refractive index. For an arbi-
trary pulsed ultrasonic wave with functional form f(x.1,, )
where 7, is the pulse repetition period, v can be expressed in
terms of the Fourier expansion of f(x,4,¢, ) as

va,) = io v, sinjna, +4,), @
with
w, =2w/t,

a, =w,t —k,x

v, =a,v

k, =w,/v

v = ultrasonic velocity,
where a, and ¢, are the amplitude and phase of the ath
Fourier component of the pulse. In this case u is determined
by the pulse peak amplitude.

Substituting Eq. (4) into Eq. (1) and moving the dc com-
ponent of v{a,) outside of the integral yields:

A(01)= Ce“"ei"°“"'°f gixtin®

-1

X [ e"=mer* dx . ()

Using the identity'®

et 3 J (e, (©)
the product expression in Eq. (5) can be rewritten as
0= 5 v m

where J,(€) is the rth order Bessel function and

w"' = 2 Z r.{m) (Vl )"’Jr,, (V,' )’"

Xe‘ﬂ'{’l("‘)‘n + - '+’n¢n +'”‘)’ (8)
with 7,(m) =m — 2r, — - — nr, — - . Substituting Eq. (7)
into Eq. (5) and performing the integration yields:

A(0.t)=-(2'1 5 (W,,,e""’“"“’r"*‘*"——m;n"'), 9)

with 4, = v, sin ¢, and

2, =(ksin@—mk,). (10)
Since the ¥, terms are complex, Eq. (9) can be rewritten as
40n=2 5 (9Econfiw+ e,k +4)

— ¥R sin[lw + ma, ) + 4,]}
+i{ ¥ sin[(0 + ma, )t + 4,)

+ 9ol + ma e+ A NTEE, (1
where Re and Im denote the real and imaginary components
of ¥,,. The light intensity is then given by the square of the
real part of Eq. (11).

1(04) = {Re 4(64))*. (12)

To obtain the measured response of a fast photodetector
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it is necessary to take the time average intensity over an in-
terval 7 which is long compared to the period of the incident
light and at the same time is short compared to the pulse
repetition rate, i.e.,

*r 27

101, = 7 I1{6,t)d:, w>— >w, (13)

1
Normalizing Eq. (13) to the peak light intensity in the ab-
sence of an ultrasonic wave, i.e., 8 =0, v,, =0 for m>0,
yields

= sinf2, sinfl,

7(01‘0)

m= —won= — o n..

X({¥ e+ W!:"':"}OOS(M — njw,l,
— (¥R — WRewimlsinim — njw, 1),
(14)

which is independent of v,. The same results could have been
obtained by incorporating v, into the unperturbed media
index of refraction. Due to the sin x/x term in Eq. (14) the
light intensity will exhibit maxima when £2,, = 0, i.¢., at the
angles 6,, which satisfy the relationship

siné,, = +t mA/4,). (15)
Equation {15) is the same as the result obtained in continuous
wave diffraction theory® except that the diffraction angle is
determined by the ratio of the incident light wavelength to
the pulse spatial duration. Setting n = m — 1 and evaluating
the product (sin 2, /02,,) (sin £2, /12, ) at the angle @ = mA /
4, indicates that the diffraction orders will start to be resol-
vable when (271 /4,)> 1. Thus as the pulse repetition rate
increases and the number of pulses within the illumination
interval increases (i.e., 27l /A,»1), (sin 2,,/02,,)(sin 2,/
2,)=0 for m3#n, and the diffraction pattern becomes dis-
crete, i.e.,

T =10)= 3 (Si';,"")zlm, (16)
where
L = (WAF + (P10 =¥, (17

with 7, being the intensity in the mth diffraction order.

To illustrate the behavior of the diffracted light intensi-
ty as the ultrasonic pulse amplitude increases, ¥,, can be
factored into a series of approximate expressions based on
successively higher Bessel function products, i.e., J,;
NhJvds I sdsd I J s e

A. First-order approximation
To determine how the diffraction order intensities ini-
tially develop we can examine Eq. (17) in the limit that the v,

are small, i.e., products in ¥,, of order J,(v,N,(v, ) or higher
vanish. Usingthumtmd the relationship

Mmop 4204 40, 4, (18)
used in the definition of ¥,,, we find that for m = 0
2
| 19
and for |m| >0, '
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=70 e [ Juva)| - (20)

nykm

Since I,, = I_, , the diffraction pattern is symmetric about
the central order. In the very small amplitude limit /,~1.0
and I, ~v} /4. Thus the intensities in the individual dif-
fraction orders provide a relative measure of the ultrasonic

RTINS

B. Higher order approximations .

As the pulse amplitude increases, the J,J; and J, terms
in ¥,, begin to contribute and the intensity in the mth dif-
fraction order ceases to be solely determined by J,(v,, ) for
m > 0. For the central diffraction order (m = 0) there are no
additional terms due to the constraint imposed by Eq. (18).
However, for the higher diffraction orders, i.c., |m| >0, we
find that the intensity is given by

pulse’s Fourier amplitude spectra.
]
Iym= Ty vn)e** [ Jolva) + JolVmpale * 2 I1 dve)
nykm k ¥m/2

+ ‘g' (Ji'(v"vtl(vm_,,)et“"*‘“--l

+;(Jx.(v.vt.(vm)e*“"""-’ I

kynn4+m

with the convention that all terms vanish with noninteger
summation indices and when the indices of the v, are equal
and that the summations and Il products are valid only over
positive nonzero index values. The upper sign in the expres-
sion corresponds to the positive diffraction orders and the
lower sign corresponds to the negative orders.

Since J _, (x) = ( — 1)"J,(x), the second-order terms in
{21), J5(V,n/2 ) and the two J\J, product expressions, exper-
ience a 180° phase shift relative to J,(v,, ) in going from + m
to — m. If these terms represent a net increase in amplitude
when added to J,(v,, ), there will be a corresponding net de-
ctease when added to J _ ,(v,,). This causes the diffraction
pattern to become asymmetric.

We can use Eq. (21) to illustrate the mechanisms in-
volved in the growth of the farfield diffraction pattern. Based
on Eq. (15), each diffraction order corresponds to a multiple
of the pulse repetition rate @,. The first term in Eq. (21)
represents the first Raman-Nath diffraction order for the

mth Fourier component of the pulse. The second term repre-
J

Io=

Eq. (19)+ Z: (- Ve Mi(v2y) + L5V W _1{v2a )]}

xz[-mv.)( ) J-.qv.v_.(v.-.))+J-.(v.)(
« n=

n<qg—n

kyinm—n

Jw))

Jin)

2
’

(21

f
sents the second Raman-Nath diffraction order of the m/
2th pulse Fourier component. The J,J, and J,J_, summa-
tions correspond to the mixing of the contributions of the
pulse Fourier components, i.c., the sum and difference terms
which result in mw,. The resultant farfield diffraction pat-
tern is the superposition of the Raman—Nath diffraction pat-
terns of the pulse Fourier components and the mixing of
these components as constrained by Eq. (18).

In the continuous wave limit all Fourier components of
v vanish except for the v, which corresponds to the pulse
fundamental frequency. The resulting intensities
L=J3wv,) I, =J3v,); and I, ,, =J3(v,) correspond
to the zero, first, and second Raman-Nath diffraction or-
ders.

The next highest approximation adds J,J,J,.J,/,, and
J; terms to the expression for the intensity. In the interest of
brevity only the additions to Eq. (19) and Eq. (21) are shown
with the phase and I1 product expressions suppressed. In
each case the additions are to the terms inside the absolute
value signs. The central order is given by

A=
ncqg—n

3 J.(v.v.(v.-.))] |'. 22)

with the convention that all terms vanish with noninteger summation indices and when the indices of the v, are equal and that
the summations are valid only over positive nonzero index values. The change for the higher orders (|m| > 0) is given by

ITom=

M' (2”"’ 2 Jtz(VquI(Vm—h)"']tl(vm/)’+ z -’tz("n)’:;n("z.-m"" z J:Fl(vu)ltl(vlu+m’
LR LR A=

+ 2' ("gl("q) 2' l:;l(”n”q:l(vq-n—n)+J:Fl(vq) zl J:l(".)’,n(vﬂn--)
= N L

Recg—-m—n R<g+m-n

2
+ 921 J4ilv,) z.lﬁ‘("u»nvzl"ﬂ-"-') @3)
e+AC<m - —n
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using the same conventions as were imposed on Eq..(21).
Since J _ , (x) equals ( — 1}V, (x), the J,, J,J,, and J,J,J, ex-

" pressions maintain a constant phase relationship with J,(v,,)

in going from + m to — m. As a result, the associated in-
crease or decrease in amplitude for the + mand — m orders
is the same. In the continuous wave limit when all compo-
nents of v vanish except v, the diffracted light intensities
become Io=-’¢z)(".); ltn =J}(V-); Itzn =J§(V.); and
I, ;, =J3(v,). These correspond to the zero, first, second,
and third Raman-Nath diffraction orders. Higher order
terms will impact on the asymmetry in the diffraction pat-
tern only if the sum of the Bessel function orders is even.

. ANALYTIC RESULTS
This section provides examples of the diffracted light
intensity distribution as a function of v and the growth and
decay of asymmetries within the diffraction pattern. For il-
lustration the exponentially damped sinusoid given by Eq.
(24) is used as the pulse time history.
vie) = ve™ ™ ™ sinay [k (¢)
— kit — 2k /o)), (24)
whereh (¢ )is the Heaviside function, w, = 2#f,and, k,and k,
determine the pulse decay and repetition rates. In this form a
pulse with k, = 10.0 and k, = 30.0 has an e-folding time of
107, and a repetition rate of 307, where 7, = 1/f;. The Four-
ier amplitudes of v are v, = va, witha, = (c? + b%)'/?and
¢, and b, given by
. _(e,, —~e~4{Asine, +€, c08€,}
) a2+ é
-— —-a i
Y.—e “lAsiny, +7, eocr.l)ew.. 25)
A+ 7:
e~4%fe,sine, —Acose,} +4
a4+ é
_ e “fy.siny, —4cosy,] +4)4|/u.' 26)
A+ 7:

where 4 = k,/k,, €, = 2nik, — n), and ¥y, = 2#(k, + n).
The phase ¢, is given by arccosic,/a,) with the sign of ¢,
determined by the quadrant within which ¢, and b, fall.
Figure 1 illustrates the amplitude and phase spectra of
Eq. (24) when &, = 10.0 and k, = 30.0. For f, = 3.0 MHz
the spectral components are spaced 100kHz apart, the maxi-
mum amplitude occurs at 3.0 MHz, and the components
above and below 3.0 MHz are approximately #/2 out of

phase with a slight asymmetry in the amplitude spectra.

A. Farfield difiraction patterns

Using the spectra presented in Fig. 1 we can now exa-
mine the growth of the diffraction pattern as a function of the
Raman-Nath parameter. This is shown in Fig. 2 based on
Eqs. (22) and (23) for selected values of v with an arbitrary
intensity cutoff set at 0.1%, i.c., 1E-3, on the abscissa. In
each part of Fig. 2, the diffraction orders are shown with the
expected relstive spatial separation.

Initially when v = 0.5 [Fig. 2(a)), the central order has

b, =
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FIG. 1. (a) Pulse amplitude spectra for v = 1.0, k, = 10.0, and k, = 30.0. (b)
Pulse phase spectra for v = 1.0, k, = 10.0, and k, = 30.0.

no satellite orders above the threshold and the pattern is
almost symmetric. The positive and negative diffraction or-
ders] , ,, through/, 3, locally follow the asymmetry which
exists in the amplitude spectra [Fig. 1(a)]. As the pulse ampli-
tude increases the second-order sum and difference terms
previously discussed begin to introduce asymmetries into
the pattern. At v = 1.0 [Fig. 2(b)] the local asymmetry in the
satellite orders around 7 _,, has decreased at the same time
that the asymmetry in the satellite orders around 7, 4, has
started to increase. As the second-order terms continue to
increase in magnitude the pattern becomes locally asymme-
tricaround 7 _ ,, [Fig. 2(c)), the asymmetry between the posi-
tive and negative orders becomes more pronounced, and the
satellite orders begin to appear locally about the central or-
der. The asymmetry in 7, , through 7, , results from the
J_J, terms in Eq. (21) being the same order of magnitude as
Jy(v.). As the pulse amplitude continues to increase [Fig.
2(d)] the local asymmetry around the central order decreases
as the asymmetry increases around 7, 5. At v=2.5 [Fig.
2(¢)], the number of satellite orders around the central order
has increased at the same time that some of the satellite or-
dersabout/ , 5, have dropped below the intensity threshold.

T. H. Neighbors, il and W. G. Mayer: Ultrasonic ight difraction 19
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B. Discussion of successive approximations

The contributions of the approximations in Eqs. (20)~
(23) to the farfleld diffraction psttern presented in Fig. 2 are
illustrated in Fig. 3 a8 a function of v. The first approxima-
tion Eq. (20) is given by the dotted line, the second approxi-
mation Eq. (21) by the dashed line, and the third approxima-
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FIG. 2. (a) Farfield diffraction pattern for v = 0.5, &, = 10.0, and k, = 30.0.
(b) Farfield diffraction pattern for v = 1.0, k, = 10.0, and &, = 30.0. (c} Far-
field diffraction pattern for v = 1.5, k, = 10.0, and K, = 30.0. {d) Farfield
diffraction pattern for v = 2.0, k, = 10.0, and &, = 30.0. (¢} Farfield diffrac-
tion pattern for v = 2.8, k, = 10.0, and &, = 30.0. )

tion Eq. (23) by the solid line. For Iy, Eqs. (20) and (21) are

approximately equal and Eq. (23) results in a small correc-
tion to the intensity. The apparent divergence of the approxi-
mations for 1,, and J,, can be understood by examining the
relative magnitudes of the individual contributions to the
amplitude of the diffracted light intensity. For v = 2.0 and

T. M. Neighbors, M and W. G. Mayer: Ulirasonic light difraciion 180
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00 ) 0% 1 15 21 28
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FIG. 3. Contribution of Eqs. (20)-(23) to 1,4 through /,, as a function of v for
k, = 10.0 and k, = 30.0.

m = 29 the leading terms in the series approximations, Egs.
{20)23), excluding the phase and Il product expressions are
Jivaok J_1(viMi(Vso) and J _ (vsol(vyeV(¥5y). At the same
time the validity of the approximation presented in Fig. 3
can be gauged by examining the leading terms of the next
higher series approximations, J_(v,M_ (vl V2V (Vi)
and  J_,(v;:M vV (VoM 1(Vaol - 1(V3y)- The associated
magnitudes starting with J,(v,o) are: 1.4 10~ 3.2 103
3.3%107% 6.1X10~%; and 2.5X 107", respectively.

For v = 2.0 and m = 28, the leading terms in the series
expansion for the amplitude are: J(vyg) J_ (VoM (Vo)
J_ivsVi(vaViva) T _ifvsoli(vagWi(vsy);  and
J_ (v i(v2sV 1 (vasW (V3o — o(v3;). The magnitudes, start-
ing with J,(v,), are: 7.8X107% 3.2Xx 1073 2.3x 1073
6.1 1073 and 9.7 105, respectively. Based on the ex-
amination of /.4 and I, it is apparent that J (v, ) for decreas-
ing m drops in magnitude more rapidly than the leading
terms for the higher approximations. Also, approximations

INTENSITY

/_:l

WUYR-SATH PARARETER

FIG. 4. Contribution of Eqe. (20)-{23)t0 ] _ 4 through / _ ,, 88 2 function of v
for &, = 10.0 and &, = 30.0.

2 4
)
[
L
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INTENSITY

? 14 s 6108 H 3 ¢ 5§
” ) ]

OECAY PARAMETER &,

F1G. 5. I_, through 7, as a function of k for v = 2.0 and &, = 30.0.

beyond those presented in Eq. (23) will produce second-or-
der corrections to the intensity over the range of interest. For
v> 1.0, m <28 or m > 28 become dominated by the product
terms that correspond to the frequency associated with the
order. For v above 3.0 higher order approximations
VW JihI W/ ete.) will begin to produce first-order
corrections to the intensity.

The development of asymmetries in the associated neg-
ative orders is shown in Fig. 4. As expected the contributions
of the J,J, and J, terms in Eq. (21) which add to I,, (Fig. 3)
result in an equivalent reduction in I_,, (Fig. 4). Concur-
rently the higher order terms in Eq. (23) produce a reduction
in both the positive and negative order intensities.

C. Continuous wave limit

In the limit that the pulse approaches a continuous
wave the satellite orders vanish as shown in Fig. 5 for the
central order (v = 2.0). As k, increases the pulse amplitude
spectra approaches v,, = 1.0 for m = 30 and v,, = 0.0 for
m # 30. This causes J,(v,, ) to decrease more rapidly than the
J (Vo WiV . o) terms locally around v,,. The pattern be-
comes symmetric locally about the central order and then
vanishes as the central order intensity approaches J 2(2).

Hil. EXPERIMENTAL RESULTS

To provide qualitative verification of the theory pre-
sented in Sec. I, an Arenberg pulser was used to excite a PZT
transducer with a short pulse (3.0-MHz fundamental fre-
quency). The resulting farfield diffraction pattern from a se-
quence of pulses is shown in Fig. 6 for a pulse duration of ~4
48, a repetition rate of ~ 32 us, and a Raman-Nath param-
eter of ~ 3.0. As predicted by the theory the splitting occurs
in the central diffraction order and local asymmetry appears
around / , o, the order amociated with the pulse fundamen-
tal frequency. There is no discernable asymmetry for the
satellite orders sbout the central order as would be expected
for v~ 3.0 due to the dominance of the J,J_, terms in Bq.
{21).

T. M. Neightiors, W and W. G. Mayer: Ulrasonic fight difraction 181




']

FIG. 6. Typical pulse diffraction pattern for 3.0-MHz pulses with 4 us dura-
tion and 32 s repetition rate. Top: photograph oforders upton = 60, with
1t = 48 corresponding to location where the first order of a cw diffraction
pattern would appear. Bottom: enlargement of orders around » =48.

V. SUMMARY

An analytic expression has been derived for the Ra-
man-Nath diffraction by pulsed ultrasonic waves which can
be applied to any general pulse shape amensble to spectral
analysis. In general the resulting diffraction pattern is asym-
metric around the central order with the degree of asymme-
try dependent on the spectral composition of the pulse. A
limited set of examples has been provided which demon-
strates the degree of asymmetry for an exponential driving
pulse and the convergence to the classic Raman-Nath re-
sults when the pulse approaches a continuous wave.
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A numerica! integration method for the description of acoustic bounded beams is used to
calculate possible backscattering strength from a smooth liquid-solid interface. It is shown that

Theoretical prediction of a backscattering maximum at Rayleigh
angle incidence for a smooth liquid-solid interface

the backscattering strength is maximum for Rayleigh angle incidence. The influence of beam
shape and beamwidth on the backscattering strength near the maximum is demonstrated.

PACS numbers: 43.35.Pt, 68.25. + j, 43.20.Bi, 43.20.Fn

Recently, an interesting phenomenon associated with
the backscattering of a bounded acoustic beam from a
smooth liquid—solid interface has been reported.' This phen-
omencn involves the existence of a relative maximum at the
Rayleigh angle incidence when the backscattering strength
is measured for various incident angles. First, de Billy, Ad-
ler, and Quentin' reported on this maximum of backscatter-
ing strength for a water-stainless steel and a water—copper
interface. The same authors later considered a more general
scattering geometry and observed’ a relative maximum in
the scattering strength at both backward-scattered and for-
ward-scattered Rayleigh angles for a general incident angle.
Indeed, these observations, described as conical reflection,
have been qualitatively reported® earlier by Diachok and
Mayer for the specific case of Rayleigh angle incidence.

These experimental results have prompted several theo-
retical investigations attempting to explain these phenom-
ena. Within the context of spectral representation of acoustic
bounded beams, Norris* extended the Bertoni and Tamir
analytical procedure,® developed for forward reflection, to
the backscattering case. In light of the fact that surface
roughness should play a significant role in backscattering
measurements, de Billy and Quentin® employed the poten-
tial method as described by Welton? to evaluate the acoustic
field of a bounded beam scattered from a rough liquid-solid
interface. Comparing their theoretical results with back-
scattering measurements on samples with rough interfaces,
de Billy and Quentin showed good agreement for incident
angles of 40 or less except that their theory did not account
for the relative maximum observed near the Rayleigh critical

The sbove theoretical efforts*S appear to confirm the
belief that the relative maximum of backscattering strength
at Rayleigh angle incidence must be associated with the
boundedness of the acoustic source as well as the resonant
surface propagation mode corresponding to the Rayleigh
critical angle. Under this motivation the present study in-
tends to investigate this backscattering phenomenon of a
smooth liquid-solid interface, using an exact numerical inte-
gration algorithm 10 evaluate the scattered acoustic field de-
scribed by the spectrai representstion. This numerical algo-
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rithm was initially developed by Ngoc and Mayer® to de-
scribe acoustic bounded beams reflected from or transmitted
through layered media. As will be shown in the following
calculation results, this theoretical analysis is able to de-
scribe the general features of backscattering strength as a
function of incident angle, including the relatlve maximum
at the Rayleigh critical angle.

i. THEORY AND COMPUTATIONAL RESULTS

Following the formulation developed by Ngoc and
Mayer,® the spectral representation is again invoked to de-
scribe the scattered field of an acoustic bounded beam of
frequency w incide::i ~ato a smooth liquid—solid interface at
an incident angle 6,,

Ux,z)=(2m)~ ‘f R (k,) V(k,)

Xexp[ilxk, + zk,)] dk,. (1)

The symbols used in above equation are defined as follows:
U (x,2) is the acoustic scattered field in the (x,z) plane assum-
ing uniformity in the y dimension; k is the wave vector in the
liquid; &, and k, are the x and z components of the k vector
related by k, = (k2 — k2)'/2, The quantity R (k. ) denotes
thephne-wnverellwﬁoncoeﬁciennuliquid—.olidinter—
face(e.g., see Ref. 8) and ¥V (K, ) is the Fourier transform of the
incident acoustic beam given at the interface, describing the
complex amplitude of the constituent plane waves that form
the incident beam.

In calculating the scattered sound field the integral of
Eq. (1) is interpreted as describing the scattered field repre-
sented by a superposition of plane waves having the complex
amplitude R (k, )V (k, ). Integrating from — k to k implies
that contributions to the scattered field can come from plane
waves reflected in all directions from this interface. To be
compatible with most experimental arrangements, trans-
ducers of finite size for both acoustic source and detector will
be taken into account in the present study. In addition, one

. would also like to be able to account for the specific response

pattern of the detector in use. The scattering geometry
adopted in the following computations is Justrated in Fig.
1. The source and detecting transducers, both having a width
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of 2w, are rotated on semicircular paths of radius d. The
incident and detecting angles are defined as 6, and 8,, re-
spectively. The positive direction of these angles is indicated
by the underlying arrows and therefore detection of the
backscattered sound would assume a negative value for 4.
For the backscattering geometry, 8, = — 6,.

In the backscattering calculations to be presented, the
incident beam profile is taken to be a finite Gaussian one and
the detecting transducer is assumed to have a flat response.
The calculations are carried out according to the following
procedure:

(a) For a given 6,, the incident beam profile is first pro-
jected onto the z = O interface;

{b) The projected incident profile is then Fourier trans-
formed to yield V (k. );

(c) Interaction of individual plane waves of complex
amplitude V (k, ) with the interface is described by the pro-
duct R (k. )V (k. ), which is now entered into the integrand of
Eq. (1);

(d) The scattered acoustic field at spatial position (x,z)

" can now be evaluated by an exact numerical integration of

Eq. (1) across the surface of the detecting transducer, which
can be represented by
t=hll0‘(d—x)

(e) The backscattering strength fora given 8, = ~ 6, is
finally determined from the scattered field calculated across
the detecting surface in the preceding step by averaging them
according to the selected response of the detector.

Figure 2 presents the first set of computational results
showing backscattering strength as a function of incident
angje for three values of beamwidth, 2w = $, 10, and 20 mm,
with an acoustic source of 2 MHz. These computations are
doune for a water-stainless steel interface with the radial dis-
tance d being 50 mm. The backscattering strength curves
shown in Fig. 2 exhibit a steady decrease as the incident
angle becomes larger, with a distinct relative maximum posi-
tioned spproximately st the Rayleigh critical angle which is
calculated to be 30.65° in this case. Near the relative maxi-
mum one observes that the maximum peak increases with
besmwidth and the siope of the maximum is broadened at
the base for smaller beamwidths.
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FIG. 1. Schematic description of the scattering geometry under considers-
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FIG. 2. Variation of backscattering streagth with beamwidth for a finite
Gaussian beam of 2 MHz incident on a water—stainiess steel interface.

Next, the beamwidth is kept constant at the value of 10
mm but the shape of the incident Gaussian profile is varied.
This is achieved by introducing a parameter a in the
expression describing a Gaussian profile,

Uinc (x) = exp — [(x/aw)’]. 3

Setting @ = 1 corresponds to the incident profile used in
the previous set of calculations. In the present set of calcula-
tions, the incident beam generated by setting a = 0.5 has a
narrower profile while @ = 2.0 results in a broader profile.
These incident profiles are illustrated in Fig. 3.

Again, the above computational procedure is applied to
calculate the backscattering strength versus the incident an-
gle for the three incident profiles shown in Fig. 3. The results
are presented in Fig. 4 where the steady decrease, inter-
rupted by a relative maximum near the Rayleigh angle, is
observed for all of these profiles. The most noticeable differ-
ence among them is that the relative maximum is consider-

1.0

08

.

F10. 3. Thres Gaussion incident profiles of different shapes woed in compe-
tations of backscattering strength.
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FIG. 4. Variation of backacattering strength due to changes in shape of the
incident profile. The experimental curve is redrawn from Ref. 1 for the case
of a Gaussian beam of 4.5 MHz and 12-mm beamwidth, incident on s wa-
ter-stainless steel interface with other parameters not specified.

ably more pronounced when the incident beam profile be-
comes narrower. A typical experimentally obtained curve of
backscattering strength is redrawn from Ref. 1 and is includ-
ed in Fig. 4 for comparison.

Il. CONCLUSION

The above computations establish that a theoretical de-
scription based on spectral analysis successfully predicts a
relative backscattering maximum at the Rayleigh critical
angle and other general features of the backscattered sound
field observed by recent experimental measurements. A
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preliminary application of this theoretical approach has
identified two key parameters that would affect the back-
scattering strength as a function of the incident angle.
These two parameters are beamwidth and profile shape of
the incident beam. It is expected from this formulation that
other parameters including response pattern of the detec-
tor and distance of source and/or detector from the inter-
face would also strongly influence the backscattering
strength. ’
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Nonspecular Effects for a Finite Incident Beam Modeled
by an Even-Ordered Polynomial

TRAN D. K. NGOC anp WALTER G. MAYER

Abstrect -The reflection of non-Gaussian ultrasonic beams, expressed
in terms of nth-ordered polynomials, is discussed and it is shown that at
critical longitudinal and Rayleigh angles of incidence devistions from
the Gaussian profile case occur, varying with the polynomial representa-
tion chosen. Examples are given for water-Plexigias and water-stainless
steel flat interfaces.

INTRODUCTION

Nonspecular refiection and transmission effects of a finite
sound beam have been investigated [1]-[7) for various types
of layered media. Bertoni and Tamir's analysis [ 1) described
these effects at the Rayleigh critical angle for a liquid-solid
interface. Pittser al. [2) extended Bertoni and Tamir's ap-
proach to another structure in which a solid plate is immersed
in a liquid medium. This approach again was able to describe
nonspecular effects at the critical plate-mode angles associated
with Lamb waves of the solid plate. The problem was general-
ized to incorporate sound sttenuation in the media and was

Manuscript received November 8, 1982; revised April 26, 1983. This
work was supported by the Office of Naval Rescarch under code 412,

The authors are with the Physics Department, Georgetown Univer-
sity, Washington, DC 20057.

solved numerically by Ngoc and Mayer [3)-[6]. Thisled to a
description of nonspecular reflection and transmission effects
at all incident angles where these effects may occur. The
numerical approach enabled the discovery of nonspecular
effects at the longitudinal critical angle [ 3] of the liquid-solid
structure and at the between-mode angles {S] of the liquid-
solid-liquid structure in addition to those taking place at the
Rayleigh angle and the critical plate-mode angles of the respec-
tive structures. It was also able to describe the variation of
nonspecular features as the incident beam was steered away
from the critical angles.

The results of these studies provided an adequate under-
standing of the physical processes that underlie the nonspec-
ular effects taking place upon reflection from or transmission
through a flat interface. However, a major deficiency of the
above theoretical models that limits the application of these
effects to practical problems rests with the fact that these
snalyses are all based on the assumption of an incident beam
having a Gaussian intensity distribution.

In most practical situations where one finds a sound beam
incident at an interface, the incident beam profile would in-
variably be non-Gaussian. Thisis due to the fact that all acous-
tic beams traveling in any kind of medium must be subjected
to several mechanisms that will distort the beam patterns [8],
(9). Such mechanisms include, for example, nonlinear inter-
action, absorption, geometrical diffraction, and dispersion of
the medium itself. These mechanisms would sometimes change
the beam pattern produced by the transducer by enhancing
or reducing the side lobes. It is therefore quite desirable to be
able to understand how an incident beam with sidelobes be-

0018-9537/83/0700-0276301.00 © 1983 IEEE
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haves after interacting with an interface. In addition, one
would also like to know if sidelobes are generated as part of
nonspecular reflection or transmission of a non-Gaussian inci-
dent beam. As a result one can distinguish the changes in
beam profile due to the nonspecular effects from those pro-
duced by the above-mentioned mechanisms associated with
the medium,

In general, the current theoretical models describing non-
specular effects would become more useful if they allowed for
treatment of incident beams of an arbitrary intensity distribu-
tion. In this paper, the numerical approach developed for
Gaussian incident beam will be modified to investigate the
nonspecular effects for incident beams having an nth-order
polynomial intensity distribution. The choice of the poly-
nomial distribution was motivated by the consideration that
polynomial distributions can approximate very well many
transducers in current use; furthermore, they can be adapted
to be used as basic components to construct an arbitrary in-
tensity distribution. In the following, modifications to the
theoretical framework will be illustrated and sample nonspec-
ular reflected beam profiles computed from the modified
theory will be presented.

THEORETICAL FORMULATION

Consider a finite beam bounded in the (x, 2) plane and uni-
form in the y-dimension, of angular frequency w = 27 f and
beam width 2w. A spectral representation of such a bounded
beam treats it as a superposition of an infinite number of plane
waves having the same frequency but different amplitude and
incident at slightly different angles about a central direction
indicated by 0;. Extending the principle of spectral represen-
tation to a reflected or transmitted bounded beam one can
describe the reflected or transmitted field distribution by

kj+afwo
Ulx, z)=(2m)"" f P(ky) V(ky)

ki-nfwo
- exp li(xky +zk,)] dk,, m

where P(k,) is the plane wave reflection or transmission co-
efficient for the layered structure under consideration. As
before (5], V(ky) is the Fourier transform of the incident
field and wo = w/cos 8; and k; = k sin 8;.

The present study investigates an incident beam described
by an nth-order polynomial and compares the computational
results with those for a Gaussian incident beam. Since most
sound beams in practice are symmetric only the even orders of
polynomials are considered. The specific form of the poly-

nomials used to model the incident beam in this study are
taken to be
Aapll- (x/wp)?1", -woKx<wq:
Usntx,0)={ " ° ° @
0, elsewhere,

where A,, is the normalization constant. In order that re-
flected beam profiles calculated for a polynomial-type incident
beam can be compared to those for Gaussian beams, 4,,, will
be normalized according to

wo wo
A%nj (1~ (x/wo)*1?" dx -J 1U, 1 dx, (3)
-wo

-wo
where Uy(x, 0) is the Gaussian incident distribution given by
Up(x, 0) = exp [- (x/wo)® + ixk;]. (0
Evaluation of the right-hand side of (3) yields

wy
f 1Ug® dx = (%/2)' wo erf (V/2), (5)
“wo
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Fig. 1. Profile of incident beam represented by zero-ordered poly-
nomial [step function] (long dashes); 2nd-ordered polynomial (short

dashes); 4th-ordered polynomial (dash-dot); 6th-ordered polynomial
(dash-double dot); and a Gaussian distribution (solid line).

where the function erf(x) is defined by

X
erf(x) = 2/(m)'/ f exp [-12] dr. (6)

°
Combination of (3) and (5) gives the normalization constants
Aap up to the sixth order as

Ap =0.7734,
Az =1.0590,
As =1.2132,
Ag =1.3243. 4]

The normalized intensity profiles of the even-ordered
polynomial incident beams and the Gaussian intensity profile
are presented in Fig. 1 for comparison. It is noted that the
analysis of the general even-ordered polynomial beams also
covers the special case of a piston source, where n = 0.

In order to evaluate the reflected or transmitted sound field
from (1), one needs to determine V(k,) from the polynomial
incident profile given by (2). This results in

n sina m b,
Van(@) = 2Wo ...Z-:oa"" [sz_; a—,f

COSA M Cpg .

+ . qz.:‘ a_""]' fora #0;

2 L] m » -1ne
= Jw, P

0 Z, | . b g
» -1/

+qz.:‘ Cme _(24)! . fora =0, (8)

where
a=(k;~ ky)w,
S = [(-1)" n1(2m)1] /Im! (n - m)],
form=0,1,2,"",n,
bmp = (-1)P/(2m - 2p)!, forp =0,1,2, *,m,
emp = L1 1/((2m - 29 + 1),
forg=0.1,2,---,m.
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Fig. 2. Rayleigh angle reflection from a water-stainless steel flat inter-
face for a Gaussian incident beam (long dash-dot); zero-ordered poly-
nomial (short dashes); 2nd-ordered polynomial (short dashes-dots);
4th-ordered polynomial (short dashes-double dots); 6th-ordered
polynomial (long dashes).

Evaluation of the integral in (1) to determine the reflected
or transmitted sound field is now possible since V(k,) has
been determined and the plane wave reflection or transmission
coefficient P(k, ) for several layered media is well established

(5].

COMPUTATIONAL RESULTS

The nonspecular effects for an incident beam having an even-
ordered polynomial profile are illustrated here for the simple
case of a bounded beam reflected from a liquid-solid interface.
Calculations are performed for the Rayleigh critical angle of a
water-stainless steel interface and for the longitudinal critical
angle of a water-Plexiglas structure.

In Fig. 2, the nonspecularly reflected beam profile at the
Rayleigh angle is presented for both types of incident profiles.
In the well-known case of a Gaussian profile, the reflected pro-
file shows the familiar two peaks with a trailing field on both
sides of the beam. However, reflected profiles associated with
the even-ordered polynomial incident beam all exhibit distinct
sidelobes in place of the trailing field. Among profiles of dif-
ferent orders, the profiles of lower orders have a higher reflec-
tion intensity level as measured by the magnitude of the two
principal peaks. In general, one observes that the polynomial
description of the incident beam does not change the funda-
mental nonspecular features other than the appearance of the
sidelobes.

For the water-Plexiglas interface, nonspecular effects are
investigated for the longitudinal critical angle. Results of an
earlier study [3) for a Gaussian incident beam only showed
the nonspecular feature of a lateral displacement. For the case
of polynomial incident beams the nonspecularly reflected
beams for all orders considered are again characterized by a
lateral displacement of approximately the same magnitude.
Sidelobes, although discernable but very small, are also present
on both sides of the main peak. These results are illustrated in
Fig. 3. The appearance of sidelobes in both sets of caicula-
tions is definitely associated with the choice of an nth-ordered
polynomial for the incident beam distribution. For sucha
distribution, decomposition of the incident beam into plane
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Fig. 3. Critical longitudinal angle reflection from a water-Plexiglas flat
interface for a Gaussian incident beam (long dashes-dots); zero-
ordered polynomial (short dashes); 2nd-ordered polynomial (short
dashes-dots); 4th-ordered polynomial (long dashes).

waves as represented by its Fourier transform V,,,(a) shows
contributions from plane waves deviating considerably from
the central direction are quite significant and vary according
to sin ar/a or cosa/a. As a result, the trailing field which
always exists in the case of a Gaussian incident profile is no
longer present and sidelobes are introduced into the reflected
profiles.

CONCLUSION

The description of a finite incident beam by an even-ordered
polynomial has been shown to lead to a new nonspecular fea-
ture in the reflected beam profile. The computational results
predict that upon reflection at the critical angles associated
with layered media, sidelobes will appear in the reflected
profile if the incident beam has a polynomial distribution
instead of a Gaussian one. The present study can form a basis
for investigations of nonspecular reflection or transmission of
an incident beam having an arbitrary intensity distribution
which can be modeled through polynomial fitting.
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